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Photonic bandgap (PBG) material can prohibit the
propagation of light in certain directions for certain
bands of frequencies along with periodic constant vari-
ations [1–3]. Appropriately, recent studies [4] bring for-
wards theoretical analysis involving the infiltration of
liquid crystal (LC) into high index-contrast photonic
crystal (PC) template. Subsequent experimental studies
of temperature variation in LC/PCs confirm expected
frequency-shifts of the bandgap and the reduction of
peak reflection-efficiencies. Using the temperature in-
dex of a nematic liquid crystal, the 3D LC/PC [5], 2D
LC/PC possessing a triangular lattice of air poles [6]
and 2D LC/metallic PC [7] have been reported.

In this paper, we extend the exact formalism of finite-
difference time-domain (FDTD) method of square lat-
tice PBG structure to LC/PC structure. A well-known,
efficient implementation is based on Yee’s mesh [8],
where the electric and magnetic field components are
evaluated at different grids having the same pitch, but
which have been shifted over half a grid spacing, both
in space and in time. For a linear material in a source-
free region, the time-dependent Maxwell’s equations
can be written in the following form,

∇ × �E(�r , t) = −µ(r )∂ �H (�r , t)

∂t
(1)

∇ × �H (�r , t) = ε(r )∂ �E(�r , t)

∂t
(2)

where ε(r ), and µ(r ) are the position dependent per-
mittivity and permeability conductivity of the material,
respectively. The following FDTD time stepping for-
mulas are the spatial and time discretizations of above
equations on a discrete two-dimensional mesh within
the x-y coordinate system for the E polarization,
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where the index n denotes the discrete time step, in-
duces i and j denote the discretized grid point in the
x-y plane, respectively. �t is the time increment, and
�x and �y are the intervals between two neighboring
grid points along the x and y directions, respectively.
In this paper we adopt the mesh to represent structure
in �x : �y = 2 : 1 and each contains 15 sub meshes.
Similar equations for the H polarization can be easily
obtained.

Boundary conditions here we used are the perfectly
matched layer (PML) [9] and Mur’s absorbing condi-
tions [10]. The net effect of this is to create an absorbing
medium (which is nonphysical) adjacent to the outer
FDTD mesh boundary such that the interface between
the PML and the FDTD mesh is unreflectible for all fre-
quencies, polarizations, and angles of incidence. The
FDTD time-stepping formulas are numerically stable
if the following condition is satisfied,

�t ≤ 1

c
√

�x−2 + �y−2

where c is the speed of light. In additional, the ab-
sorption in the PML’s should increase quite gradually
toward the outside, in order to preserve the interaction
between neighboring crystal pillars or holes.

We proposed a tunable photonic crystal model in
which the photonic band gap can be tuned as desired by
controlling parameters. The photonic crystal structure
is generated by using an ensemble of squares in periodic
array (8 periods). The photonic crystals examined are
composed of air rods arranged on a pitch a of 300 nm,
surrounded by a sandwich of sillicon (ε = 11.56) in
silicon dioxide to confine the light in the 2D plane.

Fig. 1 shows the transmission spectra of 2D Si-air
rods photonic crystal. A 60 nm diameter of the rods
is taken. At this point we assume it as normal inci-
dence (the incidence vector Kx = 0 and Ky = 0) and
subsequently the finite differencing mesh is applied to
the structure. As is shown in this figure, the normal-
ized frequencies at the center of the primary photonic
bandgap ω0 for TM and TE polarized waves are 0.3795
and 0.5335 fa/c. This can be directly compared with
second complete PBG residing at 0.741 and 0.614 fa/c.
The gap-midgap ratio (�ω/ω0) for the TE modes is
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Figure 1 Transmission spectra of Si-air photonic crystal for normal
incidence. Two polarized waves in TM mode and TE mode are shown.

5.8% and 11.2% at two bandgaps, while that of the TM
modes is 51.4% and 15.7%. This gives rise to no over-
lap in the complete PBG for two different polarization
states as a support to no complete and absolute PBG for
triangular and hexagonal lattice structures for the same
air filling fraction [12].

The microstructure PCs were infiltrated with nematic
liquid crystal ZLI1132. The eutectic mixture ZLI1132,
which is in the nematic phase at room temperature and
undergoes a phase transition to the isotropic phase at
71 ◦C, was chosen for its acute mutation near the phase
transition point. The temperature dependence of the re-
fractive index of ZLI1132 can be found in Fig. 4 in
reference [5].

With decreasing temperature, a stepwise increase of
the refractive index was observed at the phase transition
point between the isotropic and nematic phases. The re-
fractive index, nave = [(n2

e + n2
o)/3]1/2 in the nematic

phase is an average value of the refractive indexes for
the ordinary and extraordinary lights in nematic phase,
where the averaging is dependent on the director align-
ment, the field amplitude, and the polarization. The
magnitude of the step of the refractive index was about
0.012. This is expected for an isotropic distribution in
the limit where the LC-silica refractive index difference
is sufficiently small that there is only weak spatial in-
homogeneity of the optical electric field in the LC/Si
square lattice.

In order to investigate the magnitude and direction of
the observed band edge shift, calculations of the band
structure of the infiltrated photonic crystal were per-
formed using the FDTD method. The refractive index
for the H -polarized field depends on the alignment of
the liquid crystal director field inside the pores. The
model is simplified to an axial alignment, in which the
liquid crystal director is parallel to the pore axis.

Fig. 2a shows the TM transmission spectrum of
LC/PCs. From 2b we can see there is a distinct stop
band from 2.7–3.7 fa/c in normalized frequency, the
bandgaps become narrow when liquid crystal infil-
trated, and all transmission peaks go red-shift.

Because the average refractive index of LC changes
little, one observed that the band edge is shift slightly
in the nematic range at different temperatures. To be
clearly observed, in this case, calculations of three
points—30 ◦C, 70 ◦C, 71.5 ◦C were made and the re-
fractive index of silicon was taken unchangeable at

Figure 2 Transmittance spectrum of ZLI1132/Si PBG at room temper-
ature (a). The varieties of the width of band gap are also showed (b).

Figure 3 Transmittance spectra of LC/PGB material at different
temperature.

3.400 at all temperatures. In the range the span of re-
fractive index �n is relatively large and the phase tran-
sition point of ZLI1132 is about 71 ◦C. Fig. 3 is a part
of the transmission spectra. From the data of the figure
we can see all the peaks go up-conversion in frequency
with temperature arising. It is can be applied to whole
spectra. At the same time, the band gap of LC/PCs
becomes wider. As the temperature reaches the phase
transition point, the LC turns into isotropic medium.
The refractive index does not change any longer and so
does the bandgap.

Further simulations were undertaken to highlight
bandgap under the influence of filling fraction. We
assume the composite PBG material has a pitch a =
300 nm and LC refractive index nave = 1.54. The ra-
dius r of LC cylinder chooses different values, corre-
sponding to the fraction. The curves in Fig. 4 show the
normal incidence light transmit through such a struc-
ture that has a thickness of 8a, different r/a values and
infinite transverse dimension.

It can be found that the widths of band gap depend
on the r/a, that is to say, the filling fraction. When
r/a in the range from 0.1 to 0.3, there a clear stop
band in the LC/Si composite and always has three wide
complete bandgaps; with the increasing ratio of r/a, the
big band gaps split into many narrow gaps, the perfect
photonic band gap is destroyed; on the other hand, as
the ratio diminishes, the gap narrows. The numbers of
gap remain unalterable but the transmission peaks boost
up and the photonic band gaps vanish at last.
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Figure 4 varieties of the band gap width in Si-LC photonic crystal.

Figure 5 Wavelength spectrum of the pulses measured at each of the
detectors placed inside each of the different channels of the device. For
point defects, r1 = 15 nm, r2 = 30 nm, r3 = 60 nm, r4 = 90 nm, r5 =
120 nm and r6 = 150 nm and the corresponding wavelengths are λ1 =
0.698 µm, λ2 = 0.779 µm, λ3 = 0.857 µm, λ4 = 0.937 µm and λ5 =
1.035 µm, λ6 = 1.071 µm respectively.

We expanded the results to a multichannel wave-
length division multiplexing (WDM) system [11, 12].
As shown in reference [11], the system included six
cavities, each having a different defect size and its own
guiding channel. Each channel is branched from the
main waveguide.

Such a topology allows for better utilization of the
structure by maximization of the density of the chan-
nels within the computations region. Combining with
the data in Fig. 4, we defined six cavities with different
point defects (r/a = 0.05–0.5) while maintaining the
dielectric constant of all LC point defects and back-
ground silicon constant at εr = 2.37 and ε = 11.56. A
separate analysis for each point defect in first PBG was
performed before this case, which corresponded to each
central wavelengths. We simulated the structure using,
again, the FDTD method. A pulse of center wavelength
λ0 = 0.785 µm and pulse width �λ = 0.446 µm was
transmitted through the waveguide and the excited sin-
gle state inside each cavity, the frequency of which was
proportional to the size of the defect. Inside each chan-
nel we again placed a detector to obtain the wavelength
spectrum of the field in each channel, which is shown
in Fig. 5.

Also demonstrated in Fig. 5 is the correspondence of
different point defect sizes to different localized modes

with different center frequencies. The central wave-
length of each channel is directly proportional to the
radius of the defect; in other words, as we increase the
radius of the defect, we are spanning through the avail-
able bandwidth of the incident pulse. An additional re-
mark is that there is a limitation as to how large one
can increase the radius of the defect while maintaining
a single mode inside the cavity. Once the size of the
defect starts getting close in size to that of the lattice
rods, multiple modes start to exist in cavity. Finally, the
difference in the spectral linewidths between different
channels is due to the difference in Q values of differ-
ent cavities, which can be optimized for equally high Q
values. The most important advantage is the LC inside
the cavity can broadly tune the narrow spectra features
characteristic of PC based WDM. Of course, the tun-
ing could also be used to close the band gap provide
that the bandgap was sufficiently small. Using electric
fields to reorient the director field, we could switch the
light propagation in certain channel of LC infiltrated
PC devices.

In conclusion, the focus of this work is on
the simulations of electromagnetic wave propaga-
tion through two-dimensional LC/PBG materials. The
FDTD method with PML absorbing boundary condi-
tions is applied to solve Maxwell’s equations when
an electromagnetic wave propagation through two-
dimensional array of cylinders. Further study is per-
formed to investigate the relationships between the
band gaps and the ratio of radius/lattice constant. The
response for transmission spectra will also be studied
for the structure in which different temperatures are in-
troduced to the material. Finally we expand our model
to a new approach for achieving a high-density wave-
length selective cavities for use in WDM systems.
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